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Abstract

Simulations at a range of resolutions are compared to observations from the South-
East Pacific taken during VOCALS-REx. It is found that horizontal resolution makes
little difference to the bulk properties of the simulated cloud and drizzle, but the high-
est resolution simulation is able to realistically represent mesoscale features in the5

cloud field. We focus on the highest resolution simulation and demonstrate that a poor
representation of the cloud microphysics results in excessive drizzle production. This
promotes persistent drizzle induced decoupling of the boundary layer, giving a poor
representation of the observed diurnal cycle of stratocumulus. Two simple changes
to the microphysics scheme are implemented, resulting in a more realistic simulation10

of boundary-layer diurnal decoupling, and improvements to the cloud liquid water path
and surface drizzle rate.

1 Introduction

The representation of stratocumulus in numerical weather prediction (NWP) and cli-
mate models is a challenging problem. The formation, persistence and break-up of15

stratocumulus is dependent on the complex interaction of many different physical pro-
cesses, most of which are themselves parametrized within general circulations models
(GCMs). Typically, mixing from the atmospheric boundary layer transports moisture
from the surface, especially in maritime regions. If this moisture is transported past the
lifting condensation level, then a stratocumulus capped boundary layer can be formed.20

Once the cloud is formed, long-wave radiative cooling from the cloud top can drive
negatively buoyant plumes which descend through the cloud layer, allowing the cloud
to generate its own turbulent structure. This cloud-top radiative cooling can be enough
to maintain the cloud layer even in the absence of surface-driven mixing, and the cloud
layer is said to be decoupled from the surface (Nicholls, 1984). As the cloud layer25

thickens, microphysical processes will increase the size of the cloud liquid droplets,

526

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/12/525/2012/acpd-12-525-2012-print.pdf
http://www.atmos-chem-phys-discuss.net/12/525/2012/acpd-12-525-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
12, 525–557, 2012

VOCALS
microphysics

I. A. Boutle and S. J. Abel

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

and the cloud will start to precipitate. This not only modifies the dynamics of the cloud
layer, but also the sub-cloud layer as drizzle evaporation below cloud base acts to cool
and moisten this layer. Finally, there is often a strong diurnal cycle in the cloud cover,
driven both by direct short-wave heating of the cloud layer, but also by the initiation of
cumulus convection beneath the stratocumulus. Therefore to simulate stratocumulus5

realistically, GCMs must successfully couple the convection, boundary layer, micro-
physics and radiation parametrizations. Models are further hindered by the fact that
thin stratocumulus often only occupies one or two vertical levels at the resolution of
operational NWP and climate models.

Stratocumulus is of great interest though for both NWP and climate studies. Inac-10

curate forecasts of stratocumulus cloud cover can have a large effect on the surface
temperature forecasts. These forecasts are of crucial importance to utilities customers
for matching supply and demand for gas and electricity, local councils for determining
whether or not to grit roads in winter and to the general public. They are also of great
importance to the climate system (Slingo, 1990) due to their radiative effects and po-15

tential feedback mechanisms in a perturbed climate. Boundary-layer clouds are also
one of the largest uncertainties in current climate models (Bony and Dufresne, 2005),
partly due to the physical processes already discussed, but also due to aerosol indirect
effects (Twomey, 1974).

Many previous studies have investigated the representation of stratocumulus in20

GCMs (Siebesma et al., 2004; Wyant et al., 2010), with the quality of the cloud fore-
casts varying significantly between models. However, recent work by Stephens et al.
(2010) has suggested a general trend of over-production of light drizzle in many GCMs.
Bodas-Salcedo et al. (2008) investigated this in more detail for the Met Office Unified
Model (MetUM), comparing observations from CloudSAT to the CFMIP Observational25

Simulator Package (COSP, Bodas-Salcedo et al., 2011) in the global NWP and climate
versions of the MetUM. They noted that the model had two distinct regions of radar re-
flectivity, one representing the non-drizzling cloud mode and the other representing the
drizzle mode. They showed that the CloudSAT observations did not show this bi-modal
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structure, and also that the intensity of the drizzle in the model was too high. It is not
only simulations at the global scale that suffer from such problems, the high resolution
versions of the MetUM also suffer from excessive drizzle (Wilkinson et al., 2012). Re-
cently, Abel and Boutle (2012) have demonstrated a simple change that can be made
to many microphysics schemes which significantly improves the representation of light5

rain.
It was with the general aim of improving understanding and modelling of stratocu-

mulus that the VAMOS-Ocean-Cloud-Atmosphere-Land Study (VOCALS, Wood et al.,
2011) was instigated, with an intensive observation period during the Autumn of 2008
in the South-East Pacific. Many different observational platforms (satellite, ship, air-10

craft, radiosonde, buoy) were coordinated to provide a detailed description of the ma-
rine stratocumulus. Abel et al. (2010) provided an overview of the performance of the
MetUM during October and November 2008, noting the over-production of drizzle as
one of the more significant model errors to be addressed. This paper extends the work
of Abel et al. (2010), focusing on a single case-study and comparing high-resolution15

NWP simulations of the marine stratocumulus to observations. Section 2 discusses
the models and observations we use and Sect. 3 gives a general overview of the case
study. Section 4 gives a more detailed discussion of the boundary-layer structure and
its representation in the model, with Sect. 5 discussing cloud and drizzle processes.
Conclusions are then drawn in Sect. 6.20

2 Methodology

We select a two-day period during 12 and 13 November 2008 for a modelling study of
the South-East Pacific. This case-study was chosen due to the presence of generally
unbroken stratocumulus cloud cover and a high density of observations against which
to validate the model. The Ronald H. Brown research vessel was located near 75◦ W,25

20◦ S during the two-day period, and this was chosen as the centre of our modelling
domain. There were also research flights by the FAAM BAe-146 on both days and by
the NSF C-130 during the 13th.
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The MetUM is used to produce a series of one-way nested simulations at increasing
horizontal and vertical resolution in the South-East Pacific. The horizontal coverage
and resolution of the nested domains is shown in Fig. 1. The driving model is the
Global Atmosphere 3.0 configuration of the MetUM (Walters et al., 2011). This is the
current operational configuration used for global NWP, seasonal and climate forecasts5

at the Met Office. The resolution used is N320 (0.5625◦ longitude by 0.375◦ latitude)
with 70 vertical levels below 80 km, quadratically spaced to give more levels near the
surface. This model is initialised from a Met Office global analysis at 00:00 UTC on
12 November 2008. To ensure that the large-scale meteorology remains as close as
possible to the truth throughout the study period, the global model is re-initialised from10

a global analysis at 00:00 UTC on 13 November 2008.
The configuration of the higher resolution domains is similar to the nested domains

currently run over the UK for operational NWP, and Table 1 shows the main differences
in their configuration from GA3.0. Some of the differences are genuinely required due
to resolution differences, whilst others are due to the latest physics developments for15

GA3.0 not yet being present in the higher resolution models. The limited-area domains
use a rotated-pole co-ordinate system, placing the equator at the centre of the domain
allowing an approximately uniform grid.

The first nested domain has a horizontal resolution of 12 km. The main differences
from GA3.0 are: the sub-grid cloud structure is not represented by the Monte-Carlo20

Independent Column Approximation, but rather by a simple plane-parallel method; the
prognostic PC2 cloud scheme is replaced with the diagnostic scheme of Smith (1990);
and the modifications to the cloud-top entrainment parametrization discussed in Wal-
ters et al. (2011) are not used. This nested domain is re-configured from the global
model at 01:00 UTC on 12 November 2008 (i.e. T +1) and thereafter is free-running25

throughout the case-study period, forced only at the boundaries by the global model.
The second nested domain has a horizontal resolution of 4 km. At this grid-length,

convection is starting to be resolved on the model grid, so the convection scheme
uses a modified convective available potential energy (CAPE) closure (Lean et al.,
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2008). The CAPE closure timescale is increased at low CAPE values, effectively turn-
ing down the convection parametrization and allowing convection to be dealt with by
the resolved model dynamics. The only other scientific differences are the size spectra
for rain, which uses a fixed intercept parameter N0 = 8×106 m−3 m−1 rather than the
variable N0 used in the lower resolution models, and some simple horizontal diffusion5

is implemented. This model also has an enhanced vertical level set, still with 70 levels,
but now with a 40 km top, significantly increasing the tropospheric resolution. Similar
to the 12 km simulation, this resolution is reconfigured from the 12 km simulation at
T +1 (i.e. 02:00 UTC on 12 November 2008) and is free-running thereafter, forced at
the boundaries by the 12 km model.10

Finally, a 1 km horizontal resolution inner domain is used and runs with no convection
parametrization. The only other difference from the 4 km model is a variable coefficient
for horizontal diffusion, based on the method of Smagorinsky (1963). Again, this model
is re-configured at T+1 from the 4 km domain (i.e. at 03:00 UTC on 12 November 2008)
and is free-running, forced at the boundaries by the 4 km model.15

We evaluate the model cloud and drizzle by comparison to observations from the
94 GHz (W-band) cloud radar and 6 GHz (C-band) scanning radar, ceilometer and mi-
crowave radiometer located on the Ron Brown research vessel, and temperature and
humidity profiles from radiosondes launched from the Ron Brown. We also obtain
estimates of the variability surrounding the ship from satellite observations of cloud20

cover from GOES-10 and liquid water path from AMSR-E, SSMI and TMI. In addition,
we employ in-situ measurements of temperature, humidity, liquid water content and
the cloud/precipitation size distribution from the BAe-146 and C-130 research aircrafts.
More details of the observational platforms can be found in Wood et al. (2011).

Finally, since we anticipate from previous studies that the representation of drizzle25

in the simulations is likely to be poor, we also conduct a modified microphysics simu-
lation at 1 km resolution, in which two simple changes are made to the microphysics
representation of the MetUM. Firstly, we implement the autoconversion parametrization
of Khairoutdinov and Kogan (2000), instead of the MetUM’s default Tripoli and Cotton
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(1980) scheme. Autoconversion represents the collision and coalescence process by
which small cloud droplets grow into larger rain droplets. Wood (2005) has demon-
strated that the Tripoli and Cotton (1980) parametrization significantly over-estimates
the autoconversion rate in stratocumulus clouds, and that the Khairoutdinov and Kogan
(2000) parametrization agrees much better with observations. Secondly, we implement5

the rain drop size distribution (DSD) derived in Abel and Boutle (2012), rather than the
MetUM’s default Marshall and Palmer (1948) parametrization. Within a single-moment
microphysics scheme, such as that of the MetUM, precipitation is represented with
a single prognostic variable, the rain mass mixing ratio (qr), and the DSD is repre-
sented by an exponential distribution. Abel and Boutle (2012) showed that whilst an10

exponential size distribution does fit observations very well, the assumption of a fixed
intercept parameter of the DSD, N0 = 8×106 m−3 m−1 as used in Marshall and Palmer
(1948), is very poor for drizzling stratocumulus. Observations show higher concentra-
tions of smaller drizzle drops in stratocumulus than the Marshall and Palmer (1948)
DSD predicts, and Abel and Boutle (2012) suggest a variable N0, which is a function15

of qr and matches observations of the DSD better across a wider range of rain rates.

3 Case study overview

Figure 2 shows a timeseries of radar reflectivity and liquid water path over the Ron
Brown during the case study period. Cloud base derived from a ceilometer and cloud
top obtained from the radar are shown, as are the inversion heights as measured by the20

three-hourly radiosondes. For each radiosonde ascent, we define whether the profile is
well-mixed or decoupled based on the difference between the lifting-condensation level
(zLCL) and cloud base (zb) as defined in Jones et al. (2011): ∆zb = zb −zLCL > 150 m
implies decoupling. There is a distinct diurnal evolution of the cloud, precipitation
and boundary-layer structure over the two-day period. During the first night (up to25

≈ 11:00 UTC), the boundary layer is well-mixed, with relatively low liquid water paths
(LWPs) around 60 gm−2 and very little precipitation below the observed cloud base.
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Around 12:00 UTC, the cloud starts to thicken and precipitate, with LWP values reach-
ing 200 gm−2 and radar reflectivities of −30 dBZ extending near to the surface (we
do not show radar returns below 150 m due to noise). After this, during the day, the
cloud thins and almost disappears around 18:00 UTC, with the drizzle reducing and
ultimately stopping. The cloud base also rises during the day and the boundary layer5

decouples. During the second night (after 00:00 UTC), the cloud thickens and starts
to precipitate again. The cloud top inversion rises slightly during the night, which is
a sign of increased cloud-top entrainment. This is consistent with a well-mixed bound-
ary layer with a thick layer of coupled capping stratocumulus. Similar to the first day,
after ≈ 12:00 UTC the cloud thins and precipitation stops during the second day. The10

boundary layer also decouples more strongly on the second day. Profiles from the
research aircraft and satellite LWP retrievals are all in good agreement with the Ron
Brown observations, showing that this strong diurnal cycle in LWP, precipitation and
boundary-layer structure is typical of this region of the South-East Pacific.

We do not expect the model grid-point closest to the Ron Brown to mirror this evo-15

lution exactly, so here and throughout the paper we present model results from a 1◦

region surrounding the Ron Brown to give us some estimation of the variability in the
model simulations. Figure 2b shows that the 1 km control simulation does not show
such a strong diurnal cycle in LWP, with only a slight increase during the night-time. For
the whole of the second night, the observed LWP values lie outside the range of mod-20

elled LWP values in the vicinity of the Ron Brown, showing that this under-estimation of
night-time LWP is a consistent feature of the MetUM simulation. The evolution of LWP
in the lower resolution simulations is almost identical to that of the 1 km control sim-
ulation, demonstrating that the evolution of LWP is dominated by model parametriza-
tions, particularly those of the boundary layer, microphysics and radiation, and is not25

improved by increased horizontal or vertical resolution. Comparisons of cloud-cover
magnitudes with GOES-10 (not shown) show that the cloud-cover is well represented
at night, and over-estimated during the day. This combination suggests that the model
cloud is too thin throughout the diurnal cycle, i.e. the LWP divided by the cloud fraction
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is always too low. This is generally consistent with the results presented in Wyant et al.
(2010).

The simulation with modified microphysics parametrizations has higher values of
night-time LWP, in better agreement with the observations. The cloud amount (not
shown) is also better at night, although both the LWP and cloud cover during the day-5

time are now too high. This worsening during the day is mainly due to there being
too much cloud cover, the in-cloud LWP (i.e. LWP divided by cloud fraction) is now
much better throughout the diurnal cycle. Whereas the control simulation continually
under-estimated the in-cloud LWP, the modified microphysics simulation appears to
have corrected this, but over-forecasts the frequency of cloud during the day-time. As10

discussed below, part of the reason for this is a poor representation of coastal clearing
of the cloud during the day, and as shown in Fig. 2b, the satellite LWP measurements
do show some high values in the vicinity of the ship. Reasons for the improvement of
this simulation will be investigated further in Sects. 4 and 5.

We select two times, one during the day (15:00 UTC on the 12th) and one during15

the night (03:00 UTC on the 13th) to investigate the diurnal evolution in more detail.
Figure 2 shows that 03:00 UTC is typical of much of the night-time, whilst 15:00 UTC
gives a day-time comparison when there is still some cloud present, and is co-incident
with an intercomparison flight of the BAe-146 giving us many additional measurements.

Figure 3 shows a comparison of the visible satellite image at 15:00 UTC on20

12 November 2008 from GOES-10 with the short-wave upwelling radiation at top-of-
atmosphere simulated in the 1 km control model. The satellite image shows three
distinct regions within the cloud field. In the north-east corner of the domain, there is
a relatively cloud free region, with a boundary extending diagonally from 20◦ S on the
east boundary to 77◦ W on the north boundary. This cloud free region is a diurnal fea-25

ture, where the cloud clears near to the coast during the day and re-forms at night, and
is discussed in more detail in Abel et al. (2010). It is believed to be a dynamically forced
phenomenon, and the model does appear to be partly capturing it. There is a distinct
boundary within the MetUM simulated cloud field, in approximately the correct location.
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However, the coastal region has too much cloud present. The cloud free periods over
the Ron Brown around 18:00 UTC, shown in Fig. 2, are when this coastal clearing is
at its maximum extent and reaches the location of the ship. The fact that the model is
unable to clear the cloud from this region explains why the simulated cloud amount and
LWP is too high during this period of the day. The failure of the model to clear the cloud5

is related to the diagnostic cloud parametrization of Smith (1990), which calculates the
cloud fraction and condensate based on a triangular shaped sub-grid moisture distribu-
tion, with the width given by a prescribed value of relative humidity (RHcrit). Radiosonde
ascents from the coastal station at Iquique (70.13◦ W, 20.27◦ S), and profiles from the
research aircraft, show that the relative humidity is still quite high in this cloud free re-10

gion, such that for the prescribed RHcrit value (≈0.8), the model would always produce
some cloud even if it were simulating the temperature and humidity profiles perfectly,
due to part of the distribution being saturated. A prognostic cloud scheme, such as
PC2, may be able to break this link and improve the cloud simulation in this region, and
this will be a focus of future work.15

The second region, located in the south-west corner of the domain and bounded by
a diagonal line extending from 74◦ W on the southern boundary to 20◦ S on the western
boundary, contains closed-cellular convection. The scale of the cells appears quite
small. The model also appears to capture the boundary to this region relatively well,
again suggesting that the boundary is a dynamically forced phenomenon. The model20

does not appear able to resolve the small scale of the convection, instead producing
a relatively uniform cloud field in which the mixing is still parametrized by the boundary-
layer scheme. This is likely to be due to the horizontal resolution used – at 1 km the
model is only truly capable of resolving the larger convective cells. The prevailing wind
is from the south, and so there is also likely to be some spin-up along the southernmost25

boundary of the domain. The final region, in the centre of the domain and surrounding
the Ron Brown, contains a much brighter region of cloud, again with closed cellular
convection but with much larger convective cells. This region is reproduced very well
by the 1 km model, with the closed cellular structure clearly visible and the scale of the

534

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/12/525/2012/acpd-12-525-2012-print.pdf
http://www.atmos-chem-phys-discuss.net/12/525/2012/acpd-12-525-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
12, 525–557, 2012

VOCALS
microphysics

I. A. Boutle and S. J. Abel

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

convective cells appearing to be approximately the same, although the dark edges of
the cells appear larger, suggesting that the downdraft regions are too wide. It is also
clear from this image that the structure of the cloud field is the same across a 1◦ region
surrounding the Ron Brown, justifying our method of interpreting the model simulations
based on this region.5

It is only in the 1 km simulation that such detail is visible in the cloud field. At lower
resolutions the model does not explicitly resolve the convective cells, instead the con-
vection is parametrized and the cloud field appears uniform across the domain. The
coastal clearing is completely absent from the global and 12 km models, with just a faint
hint of its appearance apparent at 4 km. It therefore appears that horizontal resolutions10

of order 1 km are required to represent the mesoscale variability of cloud fields, but also
that further work is required to make model parametrizations suitable for this scale of
NWP.

4 Boundary-layer structure

Figure 4 allows us to suggest some reasons for the poor representation of the LWP15

diurnal cycle in the control simulation, and its improvement in the modified microphysics
simulation. The figure shows tephigrams in the vicinity of the Ron Brown during the
day-time and night-time. These profiles are typical of other times and locations as
measured by the BAe-146 and C-130, with the shading at 15:00 UTC showing that
the BAe-146 profiles are in good agreement with the radiosonde. The control model20

is capable of simulating a boundary layer of approximately the correct depth. The
inversion is slightly too low, consistent with the low bias in cloud top height shown
in Abel et al. (2010), which results in a sub-cloud layer that is typically colder and
moister than the observed profiles. During the day-time, the Ron Brown radiosonde in
Fig. 4a shows a weakly decoupled boundary layer (∆zb = 220 m), with a slight change25

in the temperature and moisture profiles around 950 hPa. The BAe-146 profiles show
that the boundary layer is transitioning during the observation period, consistent with
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diurnal decoupling as the insolation increases during the day. Based on the total water
mixing ratio (qT) and liquid water potential temperature (θl) decoupling metrics defined
in Jones et al. (2011), the first two aircraft profiles are well-mixed and the final three
are decoupled, although all profiles are very close to the thresholds. Figure 2a shows
that the cloud base rises by ≈200 m during the period of the BAe-146 profiles, with the5

lifting condensation level remaining around 800 m, which again results in the ∆zb metric
diagnosing well-mixed boundary layers initially and decoupled boundary layers for later
profiles. The model profiles are generally able to capture this decoupled structure,
although the extent of the decoupling appears much stronger, as shown by the large
change in temperature and dewpoint around 975 hPa in Fig. 4a. The Lock et al. (2000)10

boundary-layer scheme diagnoses a decoupled stratocumulus layer for the nearest
grid-point to the Ron Brown, and 75 % of those within the 1◦ radius. The model is
typically too moist in the sub-cloud layer, although the observations do lie within the
range of model variability. Modelling this boundary-layer structure is something that
does improve with horizontal and vertical resolution. In the global and 12 km models,15

the inversion is lower, a likely symptom of the coarser vertical grid, forcing the sub-
cloud layer to be colder and moister still. This results in most of the domain (80 % at
12 km and 100 % at global resolution) being diagnosed as decoupled stratocumulus
over cumulus convection, something which was not observed on this day.

During the night-time, the profile in Fig. 4b shows a single mixed-layer, with temper-20

ature and moisture profiles well-mixed from the surface up to the cloud layer, which is
just a thick layer of capping stratocumulus. This explains the reason for the observed
strong diurnal cycle in LWP. During the day-time, the cloud layer is typically decou-
pled from the surface, and so the moisture supply to the cloud layer is cut-off, and the
cloud thins due to short-wave heating. During the night, the cloud-layer re-couples25

to the surface, allowing moisture to be mixed up into the cloud layer, forming a thick
layer of stratocumulus with high LWP. The model, however, is unable to fully repre-
sent this behaviour. The model profile looks more well-mixed than it does during the
day, explaining the slight increase in LWP, although the boundary-layer scheme is still
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diagnosing this as a decoupled boundary layer. This prevents the model from mixing
the surface moisture supply up into the cloud layer, explaining the low LWP. This profile
is typical of the surrounding region, with 70 % of the grid-points still being diagnosed as
decoupled and only 5 % are diagnosed as well-mixed (the rest involving some cumulus
convection). Decoupled boundary layers are persistent throughout the entire night in5

this simulation, and there is very little signal that the decoupling is correlated with the
solar radiation. The radiosonde profile shows that the cloud top inversion rises slightly
during the night-time, and this is likely to be due to increased entrainment from the
cloud-top, due to surface driven plumes reaching the cloud top and entraining warmer
air from the free troposphere as they overshoot, and radiative cooling from the cloud10

top driving negatively buoyant plumes, which entrain some warmer air from the free
troposphere with them. The model does not show this increase in inversion height dur-
ing the night, and this is due to the weak diurnal cycle in boundary-layer type keeping
the entrainment rate approximately constant throughout the period. It is also noticeable
that the observed temperature profile is warmer than the sea-surface temperature at15

night, which would result in a negative surface sensible heat flux, which was indeed
observed by the Ron Brown. This negative surface sensible heat flux is offset by an in-
crease in the latent heat flux during the night, ensuring that the total surface buoyancy
flux remains approximately constant throughout the diurnal cycle. Because the model
profile is too cold, it maintains a positive surface heat flux throughout the night.20

Figure 4d shows that the modified microphysics simulation has a more well-mixed
boundary layer during the night, which explains the increased LWP seen in this sim-
ulation. This coupled boundary layer allows the model to mix more moisture from the
sub-cloud layer into the cloud layer, thickening the cloud and increasing the LWP. The
inversion is slightly higher in this simulation, due to increased cloud top entrainment, al-25

though still not as high as was observed. The model is now diagnosing roughly a 50/50
split between decoupled and coupled boundary layers at this time, with the presence
of coupled grid points reaching 80 % at some points during the night. The simulation
has improved the boundary-layer structure throughout the diurnal cycle, with 70 % of
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the region being diagnosed as decoupled during the day-time and a clear transition be-
tween coupled and well-mixed boundary layers around dawn and dusk. Figure 4c also
shows that the extent of the decoupling looks weaker during the day than it did in the
control simulation, but the sub-cloud layer now appears to be colder and moister, and
is now outside the region of observational variability. The reasons for these changes to5

the boundary-layer structure will be discussed in Sect. 5.
Figure 5 compares the liquid water content observed from the BAe-146 profiles

around the Ron Brown at 15:00 UTC with the model variability. The slight under-
estimation in the cloud-top height is noticeable, but also there is a much larger under-
estimation in the cloud base height. There is also a general under-estimation in the10

peak liquid water content, with the observed values lying outside the model variabil-
ity for the 1 km control simulation and only just within it for the modified microphysics
simulation. This shows that the improvement in LWP for the modified microphysics
simulation, shown in Fig. 2b is not entirely for the correct reasons. The observed pro-
file shows a thin layer of cloud, with a peak liquid water content around 0.6 g kg−1,15

whilst the model simulations both show a thicker layer of cloud with lower peak water
contents. When integrated to give the LWP, the modified microphysics simulation has
the correct total. The low cloud base values observed in the model are again likely to
be related to the diagnostic cloud scheme used in the MetUM. The relative humidity is
high enough in this region such that for the given value of RHcrit, part of the grid-box is20

assumed to be saturated. The cloud fractions in the region below ≈700 m are very low
(≈ 0.1). The lower cloud base for the modified microphysics simulations is consistent
with the profiles shown in Fig. 4c, which shows that this simulation is slightly colder and
moister in this region, resulting in a higher value of RH and more of the grid-box being
saturated. Again, the applicability of such a diagnostic cloud parametrization at 1 km25

requires further investigation.
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5 Drizzle representation

We have explicitly chosen not to investigate the spatial or temporal variability of cloud
droplet number concentration in this study. The MetUM uses a fixed value of 100 cm−3

for the cloud droplet number concentration over the sea, whilst observations from the
research aircraft show that near the Ron Brown it is typically higher (≈ 150 cm−3), but5

further away from the coast is is much lower (≈ 50 cm−3). As discussed in Allen et al.
(2011), the high values near the coast are due to pollution being advected away from
the continent. If these variations were to be modelled in the MetUM, the likely effect
would be to increase the peak liquid water content in the vicinity of the Ron Brown,
because the modelled autoconversion of cloud liquid into rain is inversely proportional10

to the cloud droplet number concentration. There is also likely to be a bigger effect
for the modified microphysics simulation, since the Khairoutdinov and Kogan (2000)
autoconversion scheme has a much stronger dependence on the cloud droplet number
than the Tripoli and Cotton (1980) parametrization.

Figure 6a,b shows histograms of radar reflectivity versus height from the 94 GHz15

vertically pointing cloud radar located on the Ron Brown, for a 1 hour period either
side of 15:00 UTC and 03:00 UTC. As shown, there is a continuous distribution of radar
reflectivity, with cloud and drizzle falling below cloud base both visible. The average
radar reflectivity calculated from integrating the particle size-distributions measured
from level runs of the BAe-146 aircraft over the Ron Brown are also shown in Fig. 6a.20

Two estimates are included, which represent the reflectivity calculated from the mea-
sured cloud and drizzle droplets, and the reflectivity calculated from the drizzle sized
drops only (D>50 µm). The difference between the two estimates shows the contribu-
tion of cloud droplets to the total reflectivity. Collision and coalescence processes lead
to an increase in cloud drop size near cloud top and there is a corresponding increase25

in the contribution of cloud drop sized particles to the reflectivity. Drizzle sized drops
are generated near cloud top and fall back through the cloud layer accreting cloud wa-
ter. This leads to an increase in the drizzle drop size and the measured reflectivity
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towards cloud base. The aircraft observations below cloud base at 700 m show that
the reflectivity is entirely due to drizzle sized droplets and that the reflectivity is lower
than at cloud base due to evaporation of drizzle in the sub-cloud layer. The radar his-
tograms show a similar pattern, with the reflectivity increasing in the cloud layer as the
drizzle increases. The maximum is observed around cloud base, with reflectivity val-5

ues reducing below the cloud as the drizzle evaporates. No drizzle reaches the surface
at 15:00 UTC, with only a small amount at 03:00 UTC, consistent with Fig. 2a.

Figure 6c,d shows that the control simulation has a distinctly bi-modal structure in
the reflectivity profile. There is a cloud mode, with reflectivities below −20 dBZ, and
a drizzle mode with reflectivities above −10 dBZ. Calculating the reflectivities using10

model cloud and model rain separately confirms that the high values are due to the rain
only and the low values are due to the cloud only. It is also noticeable that there is very
little evaporation of rain below the cloud base, with similar reflectivity values simulated
at the cloud base and at the surface. This is similar to the results shown by Bodas-
Salcedo et al. (2008) and Abel and Boutle (2012). Also shown is the variability in cloud15

base and top. We provide two estimates of each of these, following the discussion
around Fig. 5. Defining the cloud as the region where cloud fractions are > 0.5 seems
to provide a better estimate of the location of the bulk of the cloud, removing the very
low cloud fractions seen below 700 m.

The modified microphysics simulation, shown in Fig. 6e,f, no longer shows the bi-20

modal structure of reflectivity profiles, matching the observations much better. There is
now a continuous transition from cloud to drizzle, and also some evaporation of drizzle
below the cloud base. This enhanced evaporation is consistent with the results of Abel
and Boutle (2012), and helps to explain why the sub-cloud layer is cooler and moister
in this simulation, as shown in Fig. 4. As the drizzle evaporates below cloud base, it will25

cool and moisten the sub-cloud layer. This then has the further effect of increasing the
RH, which results in the cloud scheme producing some small cloud fractions. Here,
the two methods of defining cloud base produce very different results at 15:00 UTC.
Everywhere drizzle is present there is also some cloud present, but defining the cloud
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layer as the region where cloud fractions are > 0.5 gives a cloud layer similar in depth
to that observed, and some drizzle evaporating below the cloud base.

Figure 7 shows normalised histograms of the cloud-base drizzle rate against the
cloud LWP. Here, the definition of cloud base becomes important, and we chose to
define it as the point at which cloud fractions fall below 0.5. This is because the cloud5

base drizzle rate is used by Comstock et al. (2004) to represent the peak rainfall rate,
below which evaporation is the dominant process rate and the rainfall rate reduces. For
cloud fractions lower than 0.5, the majority of the grid-box is cloud-free, and therefore
evaporation is the dominant process rate. As shown in Fig. 6, the peak in radar re-
flectivity is observed at cloud base in reality but actually slightly above it in the model.10

If cloud base were taken to be the point at which cloud fractions reached zero, in the
modified microphysics simulation, all the rain has evaporated by this point.

Figure 7a shows a good relationship between the two quantities, which matches well
the relationship discussed in Comstock et al. (2004), which is based on observations
taken in this region of the South-East Pacific. However, the data fit is not at the ex-15

pected value of 100 cm−3, the fixed value of Nd used in the MetUM, but at a much
lower value nearer 50 cm−3, similar to the results presented in Abel et al. (2010). This
suggests that the model is too efficient at producing drizzle, i.e. for a given LWP and
cloud droplet number, the model produces too much cloud-base drizzle. The use of the
Khairoutdinov and Kogan (2000) autoconversion parametrization (Fig. 7b) in the mod-20

ified microphysics simulation slows down the production of drizzle in the cloud layer,
resulting in a much better fit to the 100 cm−3 cloud droplet number curve.

Figure 8 shows a comparison of radar reflectivity from the 6 GHz scanning radar
located on the Ron Brown with the same quantity simulated in the MetUM. The plots
show the highest reflectivity observed in each atmospheric column. The model plots25

are adjusted to only show reflectivities that would be visible to the radar. Much of the
white space in the model plots actually contains values of reflectivity between −10 and
−20 dBZ, which we expect is present in reality, but cannot be seen by the radar. Similar
to Figs. 2a and 6a,b, there are very few reflectivity returns at greater than 0 dBZ shown
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in Fig. 8a,d, demonstrating that the character of the cloud and drizzle surrounding the
ship is much the same as was observed over the ship by the cloud radar. During
the day, there is very little precipitation at all, whilst during the night, there are some
cells of drizzle, but on the whole the radar is observing very light rain. By contrast,
Fig. 8b,e shows that the 1 km control simulation has high (>5 dBZ) values of reflectivity5

throughout the domain. Almost all the cloud is drizzling, and some of the cells are
quite intense, with reflectivities in excess of 20 dBZ. At night, 54 % of the region is
showing detectable reflectivity returns, compared to only 13 % of the observations,
and the average reflectivity return is too high by ≈ 10 dBZ. Comparisons of similar
radar scans throughout the two-day case study shows that the model consistently has10

reflectivity values too high throughout too much of the domain.
In the modified microphysics simulation, Fig. 8c,f shows that the extensive drizzle

across much of the domain is significantly reduced. There are only a few small cells
of relatively light drizzle remaining. The spatial coverage of detectable reflectivities
is just 11 % during the night, much closer to the observed value. The average radar15

return is still too high by ≈ 5 dBZ, although this is heavily skewed by the single cell
visible 30 km east of the Ron Brown, which is very intense. If this is removed from
the statistics, the average reflectivity now matches the observations very well. There
are however still too few cells, which are typically too large in size. The average cell
size during the night is 13.9 km2 in the observations (ignoring cells which are smaller20

in size than the model grid), compared to 35 km2 in the model. This implies that there
are just under half the number of cells modelled as were observed. It is likely that the
size and intensity of these cells is now constrained by the model resolution and lack
of a convection parametrization, than any microphysical aspects. The convective cells
must reach a certain size before the model grid can explicitly represent the convection25

(around 5 grid-lengths), but in reality this scale is likely to be nearer to 100 m than 1 km,
and only then would we expect to see the very small cells observed by the radar.

The representation of the drizzle in the control simulation, and its improvement in the
modified microphysics simulation, allows us to suggest some reasons for the changes
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seen in LWP and boundary-layer structure. In the control simulation, the microphysics
parametrization is too efficient at converting cloud liquid water into drizzle, making the
cloud base drizzle rate too high. Although the sub-cloud evaporation rate is under-
estimated in the control simulation, the excessive cloud base drizzle means there is
still a significant amount of evaporation happening below cloud base, which can be5

seen in Fig. 6c,d by a reduction in reflectivity returns towards the ground. The reduc-
tion in reflectivity from 10 to 0 dBZ shown in Fig. 6d actually represents a greater mass
of rain being evaporated than the reduction from −10 to −50 dBZ shown in Fig. 6f, and
it is the total mass of rain evaporated that controls how the sub-cloud layer is modi-
fied. This evaporation acts to cool and moisten the sub-cloud layer, especially at night10

when the drizzle is heaviest. Due to the sub-cloud layer being too cold and too moist,
the boundary-layer scheme has difficulty overcoming this buoyancy gradient, making it
persistently diagnose a decoupled cloud layer. This prevents the cloud layer from re-
coupling to the surface during the night-time, creating the poor simulation of the cloud
LWP. In the modified microphysics simulation, by reducing the autoconversion rate, we15

have significantly reduced the cloud-base drizzle rate. This means that even when we
implement a more realistic DSD which increases sub-cloud evaporation rates, the re-
duction in cloud base drizzle rate more than compensates for this increase, allowing
the model to re-couple the cloud layer to the surface during the night. This allows mois-
ture to be mixed up into the cloud layer, increasing the LWP and improving the diurnal20

cycle, whilst also improving surface drizzle rates.

6 Conclusions

In this paper, we have discussed the simulation of stratocumulus cloud and drizzle by
the MetUM for a case-study during the VOCALS field campaign. A nested suite of simu-
lations at increasing horizontal and vertical resolution failed to show much improvement25

in the cloud and drizzle representation, demonstrating that the representation of these
processes is still strongly dependent on the parametrization schemes, and continued
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investment in improving these parametrizations is crucial for the improvement of NWP
and climate models.

The MetUM was capable of producing a credible simulation of the chosen case-study,
which in itself is not a trivial task. Andrejczuk et al. (2011) conduct high-resolution simu-
lations of the same case study in the Weather Research and Forecasting (WRF) model,5

and show a very poor agreement of their simulations with observations. Comparison
to observations showed that the MetUM simulated a boundary layer of approximately
the correct depth, with a reasonable temperature and humidity structure. However,
the model was too efficient at converting cloud liquid water into drizzle, resulting in
cloud water contents that were typically too low, and drizzle rates in the sub-cloud layer10

that were too high. An interesting feedback process was established, whereby the
poor representation of the cloud microphysics was modifying the entire boundary-layer
structure. The excessive drizzle production in the cloud layer resulted in too much
sub-cloud evaporation of rain. This acted to moisten and cool the sub-cloud layer,
stabilising the boundary layer profiles and forcing the boundary layer to become per-15

sistently decoupled in structure. This simulated structure was in stark contrast to the
observed boundary-layer structure, which during the night-time showed a single mixed
layer extending from the surface to the cloud top, with a weakly decoupled structure
during the day. This diurnal cycle in boundary-layer type was responsible for the large
diurnal range of cloud LWP. Feedbacks like this show why stratocumulus represents20

such a challenge for GCMs, as many different parametrization schemes are required
to work together to produce a realistic simulation.

Two simple improvements to the microphysics parametrization, which improve the
transition from cloud water into rain water, and the representation of the rain water
DSD, were implemented. It was shown that these modifications led to improvements in25

the simulated cloud and precipitation, but also modified the boundary-layer structure via
the feedback process described above. It is unsurprising that the two modifications led
to model improvements, since they were both, in part, motivated by stratocumulus sim-
ulation. However, the importance of stratocumulus clouds in the climate system means
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that it is important to understand how these changes to the microphysics parametriza-
tions may effect climate simulations, both via the direct mechanisms discussed in this
paper, but also via indirect effects due to the different response of the autoconversion
parametrizations to aerosol and cloud droplet number.
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Table 1. Table showing the differences between different resolution models.

Model Global 12 km 4 km 1 km

Resolution N320, 70 levels,
80 km top

12 km, 70 levels,
80 km top

4 km, 70 levels,
40 km top

1 km, 70 levels,
40 km top

Timestep 10 min 3.33 min 1.67 min 0.5 min

Convection GA3.0, based
on Gregory and
Rowntree (1990)

As GA3.0 As GA3.0 but
with grid-box area
scaled CAPE
closure

None

Microphysics GA3.0, based on
Wilson and Ballard
(1999)

As GA3.0 As GA3.0 but
with fixed
N0 =8×106 m−3 m−1

As 4 km model

Radiation GA3.0, based
on Edwards and
Slingo (1996).
3 hourly calls with
1 hourly cloud
updates

As GA3.0, but
with plane-parallel
treatment of sub-
grid clouds. 1 hour
call and 20 minute
cloud updates

As 12 km model.
15 and 5 min calls

As 12 km model.
5 min calls

Cloud PC2 (Wilson et al.,
2008) as in GA3.0

Smith (1990)
with cloud area
parametrization
discussed in
Boutle and Mor-
crette (2010).
RHcrit = 0.8 above
900 m, linearly in-
creasing to 0.91 at
surface.

As 12 km model As 12 km model

Horizontal diffusion None None ∇2 with fixed
K =8.5×103

Smagorinski
(1963) type
scheme

Vertical diffusion GA3.0, based on
Lock et al. (2000)

As GA3.0, but with-
out updated cloud-
top entrainment
parametrization

As 12 km model As 12 km model

549

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/12/525/2012/acpd-12-525-2012-print.pdf
http://www.atmos-chem-phys-discuss.net/12/525/2012/acpd-12-525-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
12, 525–557, 2012

VOCALS
microphysics

I. A. Boutle and S. J. Abel

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

  
 

 

Orography Height (km)

0  1  2  3  4  >5

Sea Surface Temperature (K)

286  288  290  292  294  296

10S

20S

30S

10S

20S

30S

90W 80W 70W

80W 70W

12km

4km

1km

Ron Brown

BAe-146, 12 Nov

C-130, 13 Nov

BAe-146, 13 Nov

Fig. 1. Orography height and mean sea-surface temperature, with the horizontal coverage and
resolution of the MetUM nested domains used in this study. Over-plotted are the tracks of the
Ron Brown (white), BAe-146 (red and yellow) and C-130 (orange) during 12 and 13 November
2008.
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     (b)

Fig. 2. (a) Radar reflectivity factor (dBZ) from the Ron Brown W-band radar during 12 and
13 November 2008, with cloud base and top (blue) obtained from the ceilometer and radar,
respectively. Black symbols represent the radiosonde inversion heights, with circles represent-
ing well-mixed profiles and squares decoupled profiles. The grey shading marks night-time, as
defined by an absence of downwelling short-wave radiation measured at the Ron Brown. (b)
Liquid water path from the Ron Brown microwave radiometer (black), from the BAe-146 (green
squares), C-130 (green circles), AMSR-E (orange upward triangles), SSMI (orange diamonds)
and TMI (orange downward triangles). The aircraft profiles are within 2◦ of the ship and the
satellite observations are a mean over a 2◦ region surrounding the Ron Brown, with the bars
showing the range of values. Over plotted are the median and 5th/95th percentiles from a 1◦

region surrounding the Ron Brown, for the 1 km control (red) and modified microphysics (blue)
simulations. The grey vertical lines show the times of the plots in Figs. 3, 4, 5, 6 and 8.
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Fig. 3. (a) Visible satellite image from GOES-10 at 15:00 UTC on 12 November 2008. (b)
MetUM simulated short-wave upwelling radiation at top-of-atmosphere, from the 1 km control
simulation at the same time. The red cross shows the position of the Ron Brown at this time,
with profile ascent/descent locations (blue) and straight and level runs (green) of the BAe-146
near this time.
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(c) 03 UTC, 13 November 2008
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Fig. 4. Radiosonde profiles from the Ron Brown (black) with variability from 5 BAe-146 profiles
(grey shading) and 6 straight and level runs (green). Over-plotted is the model profile from the
grid-point nearest to the Ron Brown (blue) and the 5th/95th percentiles from a 1◦ box surround-
ing the Ron Brown (red), for the 1 km control (a and b) and modified microphysics (c and d)
simulations. The values in the bottom right corner represent the sea-surface temperature.
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Fig. 5. Observed liquid water content (grey shading) from the profile ascent/descents of the
BAe-146 near the Ron Brown around 15:00 UTC on 12 November 2008. Over-plotted are the
median and 5th/95th percentiles from a 1◦ region surrounding the Ron Brown from the 1 km
control (red) and modified microphysics (blue) simulations.
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(c) 03 UTC, 13 November 2008
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(e) 03 UTC, 13 November 2008
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Fig. 6. Normalised histograms showing W-band radar reflectivity versus height from the Ron
Brown for 30 min either side of the time shown (a and b). MetUM histograms taken from a 1◦

box surrounding the Ron Brown at the time shown, for the 1 km control (c and d) and modified
microphysics (e and f) simulations. The green boxes represent estimated radar reflectivity from
the BAe-146, and the blue triangles the same estimate using only particles >50 µm. The black
triangles and whiskers show the median and maximum/minimum cloud top height and base.
For the model (c–f), the black shows the range calculated using cloud fraction > 0 and blue
shows the range calculated using cloud fraction >0.5.
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Fig. 7. Normalised histograms of liquid water path versus cloud base rain rate over the two-day
period from a 1◦ region surrounding the Ron Brown, for the 1 km control (top) and modified
microphysics (bottom) simulations. The relationships derived by Comstock et al. (2004) for
several values of cloud droplet number are shown in blue, with a fit to the data shown in black.
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Fig. 8. Radar reflectivity from the C-band radar on the Ron Brown (a and d) with MetUM
results from the 1 km control (b and e) and modified microphysics (c and f) simulations. The
top row (a–c) shows 15:00 UTC on 12 November 2008 and the bottom row (d–f) 03:00 UTC on
13 November 2008. Each plot shows the maximum reflectivity in the column, and the circles
show the minimum detectable reflectivity of the radar, for which the model plots are adjusted.
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